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Abstract. An even-odd isotope of ruthenium, 111Ru, is investigated in the framework of the Core-
Quasiparticle Coupling model. The energy levels and wave functions of low-lying states are calculated. The
only one parameter adjusted to obtain the results in agreement with experimental data is the strength of
the core-particle quadrupole-quadrupole interaction. The neighbouring even-even cores, 110Ru and 112Ru,
are described by means of the collective “quadrupole plus pairing” model with the Bohr Hamiltonian
determined fully from a microscopic theory without any adjustable parameter. Results for 111Ru are com-
pared with a new set of experimental data obtained recently. An importance of the pairing interaction is
confirmed. A remarkable agreement of theoretical results and experimental data is obtained for all eight
positive- and negative-parity bands delivered by the newest experiment.

PACS. 21.10.Re Collective levels – 21.60.Ev Collective models – 23.20.Lv γ transitions and level energies
– 27.60.+j 90 ≤ A ≤ 149

1 Introduction

New comprehensive experimental data for nuclei of the
A ≈ 110 region became available in the last decade. The
spontaneous fission process is often utilized to produce
nuclei of that mass region. Spectroscopic properties of fis-
sion products are investigated by means of prompt gamma
spectroscopy using multi-detector arrays. Collective states
of the even-even isotopes 108–114Ru have already been ob-
served some time ago [1]. Recently, the prompt gamma
spectroscopy of fission products of 248Cm was used to ob-
tain a new set of data for even-odd nucleus 111Ru [2]. It
is now a challenge to theoretical models to describe and
explain the structure of this nucleus.

Odd-A nuclei have for years been described by means
of the Core-Quasiparticle Coupling (CQPC) model [3–5].
The separable quadrupole-quadrupole interaction between
the even-even core and odd nucleon causes that, apart
from the core excitation energies, the quadrupole matrix
elements within the core states appear in calculations of
the odd-nucleus structure. Experimental data for all these
characteristics of even-even nuclei have, as a rule, been too
scarce to form a basis for such calculations. This is why the
core data have usually been taken from a theory. The even-
even isotopes, 110Ru and 112Ru, neighbouring to 111Ru,
have been described theoretically in the frame of a phe-
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nomenological General Collective Model in ref. [6]. That
approach demands, however, adjusting a few free parame-
ters to reproduce the experimental data. A few years ago
the “quadrupole plus pairing” collective model has been
developed for description of low-lying collective states of
even-even nuclei (cf. [7,8]). The model has allowed us to
describe in a satisfactory way these even-even Ru isotopes
without any adjustable parameters starting from a micro-
scopic many-body Hamiltonian [7]. What is more, that
collective approach to even-even nuclei suggests a natural
extension of the CQPC model to odd-A systems [8].

The aim of the present research is just the description
of the low-energy structure of 111Ru in the frame of the
CQPC model. We are going to use for the first time the
core data calculated from a microscopic many-body theory
through the “quadrupole plus pairing” collective model.
We intend to confront the results of calculation with the
newest experimental data for the 111Ru nucleus [2]. To
this end, we first recapitulate briefly the CQPC model
and the method of description of the cores in sect. 2 and
sect. 3, respectively. Application of the models mentioned
above to the problem of 111Ru is presented in sect. 4. Sec-
tion 4.1 handles the input data to be used in the calcula-
tion. The characteristics of the 110Ru and 112Ru cores, the
single-particle basis of the neutron states and the strength
of core-particle quadrupole-quadrupole coupling are dis-
cussed in turn in sects. 4.1.1, 4.1.2 and 4.1.3. Section 4.2
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is devoted to a presentation and discussion of the results
which are compared with the experimental data. Finally,
in sect. 5 we sum up the results and draw conclusions from
the present research.

2 Outline of the Core-Quasiparticle Coupling

model

The microscopic ground for the Core-Quasiparticle Cou-
pling (CQPC) model [3–5] are the equations of motion
with the schematic “quadrupole plus pairing” many-body
Hamiltonian (cf. ref. [9]), which is supposed to render the
most essential properties of the nucleon-nucleon interac-
tion in nuclei:

H = Hsp −
1

2
χ2Q

†
2 ·Q2 −

1

4

∑

t=n,p

GtP
†
t Pt . (1)

where the one-body operators Hsp and Q2 are the
single-particle mean-field Hamiltonian and the total mass
quadrupole moment, respectively, the dot stands for scalar
product and Pt is the transfer operator of pair of like nucle-
ons of kind t (= n, p) in single-particle states time-reversed
to each other.

Let the states of the odd-A nucleus in question be de-
noted as |JM,A〉 and the states of the even-even cores
of mass numbers A − 1 and A + 1 as |RMR, A − 1〉 and
|RMR, A + 1〉, respectively, where J and R stand for the
corresponding spins (and remaining quantum numbers).
The single-particle states are to be labelled with j, their
total angular momenta. The CQPC model is a lineariza-
tion and approximation of the equations of motion for
the amplitudes of single-particle and single-hole spectro-
scopic factors, uJ(j, R) and vJ(j, R), respectively. (cf. e.g.
refs. [10,11]). The corresponding Hamiltonian matrix to
diagonalize has the form

Hodd(j, R; j′, R′) =

=

[

[E(−)] + [h(−)] [Dt]

[Dt] [E(+)]− [h(+)]

]

, (2)

where index t defines the odd nucleon. The submatrices
appearing in eq. (2) read

E(∓)(j, R; j′, R′) = E(R,A∓ 1)δRR′δjj′ , (3)

h(∓)(j, R; j′, R′) = (ej − λ)δjj′δRR′

−
1

2
χ2(−1)j

′+R+J

{

j j′ 2
R′ R J

}

〈j||q2||j
′〉

×〈R,A∓ 1||Q2||R
′, A∓ 1〉, (4)

Dt(j, R; j′, R′)

= Gt〈RMR, A− 1|Pt|R
′M ′

R, A+ 1〉δjj′ , (5)

where E(R,A∓1) are the excitation energies of the cores,
ej are the single-particle energy levels of nucleon t, q2 is
the single-particle quadrupole operator and λ is the Fermi

level. All quantities appearing in eqs. (3), (4) and (5) are
considered as known. These constitute the input to the
model. A subset of eigenvalues Ek(J,A) (k numbers the
eigenvalues of the same J) of the matrix of eq. (2) gives the
excitation energies of the odd-A nucleus. References [4,11]
can be consulted in question how to choose the physical
solutions and how to calculate all relevant matrix elements
of observables within the odd-nucleus states.

Since the CQPC model is a linearized theory, the quan-
tities, which occur in eqs. (3), (4) and (5), related to
the cores are treated as given. These are: the energy lev-
els E(R,A∓ 1), the quadrupole reduced matrix elements
〈R,A∓1||Q2||R

′, A∓1〉 and the pairing correlation energy
matrix elementsDt(j, R; j′, R′). Thus, the model does not,
obviously, take into account the effect of core polarization
induced by the odd particle. The effect can be simulated
partially by changing the quadrupole interaction strength
χ2 what roughly means a change of the core deformation
felt by the odd particle. Therefore, χ2 is usually treated
as a free parameter of the model.

3 Description of the cores

It is used to believe that the best way to get good results
for odd nuclei is to take the experimental data for the
cores and insert them into CQPC model. However, it is
by far not obvious that this is really the best thing to do.
Anyway, such a procedure is hardly realizable in practice
since there is often a lack of comprehensive experimental
data. Especially, the information about matrix elements
〈R,A ∓ 1||Q2||R

′, A ∓ 1〉 is usually scarce. Therefore, a
theoretical description of the even-even nuclei should be
utilized instead.

The generalized collective “quadrupole plus pairing”
Bohr Hamiltonian [8] is in the present paper applied to
the description of the collective excitations of even-even
nuclei. In this version of the Bohr Hamiltonian the moduli
and phases of the ground-state mean values of the neutron
and proton pairing correlation energies, i.e. the pairing en-
ergy gap parameters, ∆n, ∆p and the gauge angles, φn,
φp, apart from the usual Bohr quadrupole deformation
parameters, β and γ and the Euler angles, ϕ, ϑ, ψ, are
used as the collective variables. Again, this is the micro-
scopic many-body Hamiltonian of eq. (1) which prompts
us to define that collective space. The model thus describes
not only the lowest, quadrupole collective nuclear excita-
tions but also the pairing vibrations coupled to them as
well as the collective pair transfer between neighbouring
even-even nuclei. The collective model Hamiltonian has
the following structure:

Heven(β, γ, ϕ, ϑ, ψ,∆n, φn,∆p, φp)

= Tqv(∂/∂β, ∂/∂γ, β, γ,∆n,∆p)

+Tqr(R(∂/∂ϕ, ∂/∂ϑ, ∂/∂ψ, ϕ, ϑ, ψ), β, γ,∆n,∆p)

+Tpv(∂/∂∆n, ∂/∂∆p, β, γ,∆n,∆p)

+Tpr(∂/∂φn, ∂/∂φp, β, γ,∆n,∆p)

+Tqp(∂/∂β, ∂/∂γ, ∂/∂∆n, ∂/∂∆p, β, γ,∆n,∆p)

+Vdef(β, γ,∆n,∆p) + Vpair(β, γ,∆n,∆p), (6)
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where T ’s are the kinetic energy operators of the
quadrupole vibrations, quadrupole rotations, pairing vi-
brations, pairing rotations (i.e. pair transfer), and mixed
quadrupole and pairing vibrations, respectively, V’s are
deformation and pairing potentials, respectively, and R is
the angular momentum operator being a differential oper-
ator in the Euler angles. The quadrupole excitations alone
have been treated so far in the frame of a version of the
Born-Oppenheimer approximation for the Hamiltonian of
eq. (6) which reads

Hquad(β, γ, ϕ, ϑ, ψ)

= Tqv(∂/∂β, ∂/∂γ, β, γ, ∆̄n(β, γ), ∆̄p(β, γ))

+Tqr(R(ϕ, ϑ, ψ), β, γ, ∆̄n(β, γ), ∆̄p(β, γ))

+Vdef(β, γ, ∆̄n(β, γ), ∆̄p(β, γ)) + Epair(β, γ) (7)

where ∆̄n and ∆̄p are the most probable values of the
neutron and proton pairing energy gap parameters in the
zero-point pairing vibration state of energy Epair for given
values of β and γ. This state is the ground state of the
pairing Hamiltonian

Hpair = Tpv + Vpair (8)

for arbitrary values of β and γ. More information con-
cerning details of the model is given e.g. in refs. [7,8]. The
effect of zero-point pairing vibration on the quadrupole
excitations is essential. When taken into account this ef-
fect improves description of the collective excitations very
much. That way we have obtained for the first time re-
sults compatible with experimental data using the col-
lective Hamiltonian calculated from a microscopic theory
without any free parameters. Solution of the Hamiltonian
of eq. (7) yields the quantities which are an input to the
CQPC model: excitation energies Ek(R,A∓1) of collective
states R+

k of both cores (k numbers the solutions of given
R and superscript “+” stands for positive parity), collec-
tive wave functions and in consequence the quadrupole
reduced matrix elements 〈R,A ∓ 1||Q2||R

′, A ∓ 1〉. How-
ever, the Born-Oppenheimer approximation applied to the
description of the quadrupole excitations alone does not
allow us to calculate the pair transfer matrix elements
Dt(j, R; j′, R′) from the model. This would be possible
only when solving the model exactly and describing at the
same time both, the pairing vibrations and the rotations
or the pair transfer. The matrix elements calculated this
way would be obviously treated as given input quantities
in the CQPC model. Thus, a kind of polarization effect
by the odd nucleon, usually understood as the blocking
effect, would not be taken into account. It could be tried
to consider partially by a renormalization of the pairing
interaction strength Gt.

4 The CQPC calculations for 111Ru

Properties of nuclide 111
44 Ru67 are described here in the

framework of the CQPC model discussed in sect. 2. In the
present case, the odd particle is the neutron (t = n) and
the cores are 110

44 Ru66 and 112
44 Ru68.
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Fig. 1. Map of the calculated collective potential energy sur-
face for 110Ru. Deformations β and γ are the polar coordinates
on the plane. Contour lines are every 1MeV. The black circle
points the minimum of the potential.

4.1 Input data

The input data to the present CQPC model calculations
are presented in sects. 4.1.1, 4.1.2 and 4.1.3 below.

4.1.1 Characteristics of the cores

To simplify the calculations, the 110Ru data have been
taken for both, the A − 1 and A + 1 cores. Such a pro-
cedure is admissible because of a similarity of properties
of both nuclei at low excitation energies. For instance,
the excitation energies of the first 2+ and 10+ levels of
110Ru are equal to 240 keV and 2758 keV, respectively,
whereas the corresponding values for 112Ru are 236 keV
and 2563 keV [1]. Also, the value of B(E2; 2+ → 0+) ≈
0.22 e2b2 is the same for both nuclei within the experimen-
tal error [12]. The excitation energies and the quadrupole
matrix elements of 110Ru are taken from ref. [7] where the
collective model calculations are presented for ruthenium
isotopes. The collective Hamiltonian of sect. 3 has been
determined in an entirely microscopic way there. Accord-
ing to the calculation 110Ru is a γ-soft triaxial nucleus.
The calculated ground-state mean values of deformations
β and γ are equal to 〈β〉 = 0.30 and 〈γ〉 = 21◦, respec-
tively. The corresponding dispersions of deformations in
the ground state are σ(β) = 0.06 and σ(γ) = 10◦. Let us
recall ourselves in this place that the maximum value of
σ(γ) is about 11◦. The calculated potential energy surface
is shown in fig. 1. The theoretical level scheme of 110Ru is
compared with the experimental data [13] in fig. 2. One
can see that the model reproduces the experimental data
quite well in spite of the calculation has been performed
without fitting any parameter.

As many as 35 core states up to spin R = 16 have
been included in the calculation. It turns out that only
the core states of spins R ≤ 10 contribute substantially
to the wave functions of the 111Ru states discussed here.
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Fig. 2. Positive-parity levels Ek(R, 110) of 110Ru. Each level
is marked with the spin value. The three lowest levels (k =
1, 2, 3) of a given spin are drawn. The levels calculated in
ref. [7] which have their experimental counterparts [13] (left
column) are placed in the middle column. Those calculated
but not observed experimentally are drawn on the right part
of figure.

Therefore, the basis of the collective states used in the
calculations seems to be by far sufficient to reproduce the
properties of the 111Ru nucleus.

The state-independent pairing correlation energy ma-
trix

Dn(j, R; j′, R′) = ∆nδjj′δRR′ ,

∆n = 135MeV/A (9)

is, according to the standard formula, taken to the calcu-
lations. The position of the Fermi level λ is chosen as to
reproduce the number of valence neutrons in 111Ru with
this gap value (see fig. 3).

4.1.2 Basis of the single-neutron states

The basis of single-neutron states taken to the calcula-
tion contains all orbitals of the valence spherical shell
50 < N ≤ 82, namely: 2d5/2, 1g7/2, 3s1/2, 2d3/2 of the
positive-parity and the negative-parity intruder 1h11/2. To

reproduce the negative- and positive-parity states in 111Ru
the basis has to be supplemented by the negative-parity
states 2f7/2, 2f5/2, 3p3/2, 3p1/2 from the upper shell and
the positive-parity orbital 1g9/2 from the lower shell. Espe-
cially, the 3p3/2 and 3p1/2 negative-parity states strongly
affect the positions of the low-lying, low-spin, negative-
parity states of 111Ru. On the other hand, the negative-
parity state 1h9/2, the positive-parity intruder 1i13/2, both
of the upper shell and all the negative-parity states of the
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Fig. 3. Single-neutron states in the Nilsson spherical poten-
tial parameterized as in ref. [14]. The dashed line denotes the
position of the Fermi level λ. The set of levels is very similar
to that shown in ref. [15] for A ≈ 110.

lower 28 < N ≤ 50 shell are excluded from the basis
as being of no importance in the calculation. The single-
neutron energy spectrum in the vicinity of the Fermi level
λ for 111Ru is shown in fig. 3. To be in agreement with
the core calculations, we used the same energies of the
single-neutron states as used in ref. [7]. As the position
of the Fermi level is in the middle of the valence shell,
strong pairing effects are expected meaning that all single-
particle states are of the quasiparticle character. Neither
the effective nonzero charge nor the orbital g-factor for the
valence neutron are used. The standard value of the effec-
tive spin g-factor, geffs = 0.6gns , is taken when calculating
electromagnetic properties of the odd nucleus.

4.1.3 Strength of the core-particle quadrupole interaction

As is seen from eq. (4) the quadrupole-quadrupole cou-
pling constant χ2 plays the role of the strength of the
quadrupole-quadrupole interaction between the valence
neutron and each of the cores in the model. It is the only
one fitted parameter in the present calculation. The rea-
sonable agreement between calculated and experimental
characteristics of 111Ru for both, positive- and negative-
parity states, has been obtained for χ2 = 15MeV. A the-
oretical estimation done in ref. [9] gives a value χ2 ≈
40MeV for 111Ru, whereas the value χ2 ≈ 11MeV is sug-
gested in ref. [16]. This latter value is quite close to that
fitted in the present analysis. It is worth mentioning that
in the CQPC calculations performed for 111Te [17] of the
same mass number as that considered here, a good agree-
ment between the theoretical and experimental energies
of the 15/2−, 17/2− and 19/2− levels belonging to the
νh11/2 decoupled band has been obtained for values of χ2
in the range 9–14MeV. This result is also in favour of the
estimation of ref. [16] rather than that of ref. [9].
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Fig. 4. Positive-parity states in 111Ru. Top: the results of the present CQPC model calculations. The three lowest states of a
given spin are drawn. Those states which have not their counterparts in the experiment are grouped in the rightmost column.
Numbering of the bands is arbitrary. The energy of the first 5/2+ state is normalized to zero. The width of arrows is proportional
to the γ-transition intensity. The sum of intensities of all γ-transitions leaving the given state is assumed to be 100. Bottom: a
part of the experimental level scheme of ref. [2].
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4.2 The results

One quasi-particle positive- and negative-parity states of
111Ru are calculated in the frame of the CQPC model us-
ing the input data discussed in sect. 4.1 above. The present
research gives up to the six lowest (k = 1, . . . , 6) excita-
tion energies Ek(J, 111) and wave functions of states Jπk
for spins J ≤ 27/2 and parities π = ±1 of the nucleus
in question. The results of the calculation are compared
with new experimental data for 111Ru presented in ref. [2].
The electromagnetic properties of the nucleus, like spec-
troscopic electric and magnetic moments and transition
probabilities, are calculated as well. However, so far there
are no experimental data for those quantities to compare
with the calculations. All branching ratios quoted in the
paper are calculated with the experimental values of en-
ergies and the theoretical reduced matrix elements of the
multipole operators.

4.2.1 Positive-parity states

The theoretical (upper part) and experimental (lower
part) spectra of positive-parity states are shown in fig. 4.
It is seen that the calculations reproduce all levels ob-
served in the experiment. Band 1 has been identified for
the first time in nuclei of A ≈ 110 in ref. [2]. The existence
of state 1/2+1 and the band built on it is explained theo-
retically here. The calculations suggest that state 1/2+1 is
the ground state of 111Ru and is placed about 85 keV be-
low the 5/2+1 level. On the other hand, the experiment of
ref. [2] points at state 5/2+1 , the head of band 3, as being
the ground state, whereas the 1/2+1 level is located 10 keV
higher. This small difference between the experiment and
theory is probably beyond the accuracy of the model pre-
dictions. It is worth adding that a recent research [18]
shows that the ground state of the neighbouring isotope
113Ru has just spin-parity 1/2+.

The positive-parity bands have a complicated internal
structure. This is seen in table 1 where the probabilities of
the four largest components of the band heads of positive
parity are listed. We see that this is especially the case for
the lowest-energy and also lowest-spin levels. A dominant
contribution to the wave functions of all states of bands 1,
2, 3 and 4 is from the states 0+1 , 2

+
1 , 4

+
1 , . . . of the ground-

state bands of the lighter and heavier cores coupled to the
single-particle and single-hole neutron states, respectively.
The wave functions of states of higher energy and spin be-
come purer. The model predicts also states built on other
core states, e.g., 2+2 , 3

+
1 , 4

+
2 , . . . , which have not been ob-

served in experiment of ref. [2]. For instance, the calcula-
tion gives state 1/2+2 of dominant configuration 2d5/2⊗2+2
and energy somewhat higher than 0.5MeV (cf. upper part
of fig. 4). Among the six lowest calculated states of spins
Jπ ≤ 27/2+ and energies Ek(J) ≤ 4.5MeV there is no
state with an essential contribution from the neutron or-
bital 1g9/2 which is involved in the basis of single-neutron
states (cf. sect. 4.1.2).

According to the calculations, the states belonging to
band 1 show a strong configuration mixing. The dominant

Table 1. The calculated structure of the wave functions of
selected positive-parity states of 111Ru. The four largest com-
ponents are listed for each state. The contributions from the
single-particle state coupled to the lighter core (A − 1) and
the single-hole state coupled to the heavier core (A + 1) are
given separately for every component. The abbreviation “b.n.”
stands for “band number”.

State b.n. Component Probability (%)
Jπk nlj ⊗R+

k A− 1 A+ 1

1/2+
1 1 3s1/2 ⊗ 0+

1 14 15
2d3/2 ⊗ 2+

1 11 18
2d5/2 ⊗ 2+

1 10 11
1g7/2 ⊗ 4+

1 8 8

3/2+
1 2 3s1/2 ⊗ 2+

1 8 14
2d3/2 ⊗ 0+

1 10 10
2d3/2 ⊗ 2+

1 7 9
2d5/2 ⊗ 4+

1 7 8

5/2+
1 3 2d5/2 ⊗ 2+

1 24 17
2d5/2 ⊗ 0+

1 16 17
1g7/2 ⊗ 2+

1 7 4
1g7/2 ⊗ 4+

1 3 1

7/2+
1 4 1g7/2 ⊗ 0+

1 18 17
2d5/2 ⊗ 2+

1 16 12
2d5/2 ⊗ 4+

1 9 3
1g7/2 ⊗ 2+

1 7 0

components are the 3s1/2, 2d3/2, 2d5/2 and 1g7/2 single-
particle and single-hole neutron states coupled to the yrast
states of both cores, correspondingly. Higher-spin states of
the band become purer. The dominant single-particle com-
ponent is then 2d5/2 with quite a large admixture of 1g7/2.
The calculated branching ratios in band 1 are in a qual-
itative agreement with the experimental data, as is seen
in fig. 4. The most considerable deviations of results of
the calculation from the experimental values are observed
in the cases of states 9/2+3 and 5/2+2 . The former state
decays relatively strongly to state 7/2+1 of band 4, what
is not observed in the experiment. The latter, according
to the calculation, decays to state 3/2+1 of band 2 much
weaker than the experiment shows. Configurations similar
to those contributing to band 1 enter into the wave func-
tions of the states of band 2. The dominant single-particle
configuration at higher spins is again 2d5/2 but now with
admixture of 2d3/2. The calculations show that the states
of this band decay partly to band 3 what is not observed in
the experiment. The most substantial difference between
the calculation and the observation concerns the decay
properties of state 7/2+2 of band 2, which according to the
calculation decays strongly to state 5/2+1 of band 3 rather
than to state 3/2+1 of band 2, as observed in the exper-
iment. Bands 3 and 4 have a simpler internal structure
than that of bands 1 and 2. The single-particle content of
the wave functions changes along these bands. The single-
neutron components display both, the particle and the
hole character. The main configuration of state 5/2+1 of
band 3 is 2d5/2 ⊗ 0+1 , whereas the single-neutron orbital
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Fig. 5. The same as in fig. 4 but for the negative-parity states. The energy of the 11/2−1 level is put equal to zero.

1g7/2 coupled to the yrast core states becomes gradually
the main component for higher and higher spins. Sim-
ilarly, the orbitals 1g7/2 and 2d5/2 which are dominant

within the state 7/2+1 of band 4 are replaced again by or-
bital 1g7/2 at higher-spin states of the band. In general,
with the increasing value of spin and energy along the
band the states have a purer and purer configuration. For
instance, the wave function of state 23/2+1 of band 4 has
configurations 1g7/2⊗8+1 and 1g7/2⊗10+1 in 61% and 12%,

respectively. The decay properties of the states in bands
3 and 4 are well reproduced in the calculation.

4.2.2 Negative-parity states

The calculated (top) and experimental (bottom) negative-
parity energy levels are shown in fig. 5. Most of the levels
observed in the experiment have their theoretical coun-
terparts except for the three states, namely two states
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Table 2. The same as in table 1 but for selected negative-
parity states.

State b.n. Component Probability (%)
Jπk nlj ⊗R+

k A− 1 A+ 1

9/2−1 5 1h11/2 ⊗ 2+
1 42 31

1h11/2 ⊗ 6+
1 8 2

1h11/2 ⊗ 4+
1 0 8

2f7/2 ⊗ 2+
1 1 2

7/2−1 6 1h11/2 ⊗ 4+
1 28 15

1h11/2 ⊗ 2+
1 17 27

1h11/2 ⊗ 6+
1 4 0

2f7/2 ⊗ 0+
1 1 2

11/2−1 6 1h11/2 ⊗ 0+
1 29 31

1h11/2 ⊗ 4+
1 12 3

1h11/2 ⊗ 2+
1 0 7

1h11/2 ⊗ 6+
1 1 5

13/2−2 7 1h11/2 ⊗ 2+
2 30 38

1h11/2 ⊗ 6+
2 3 3

1h11/2 ⊗ 2+
4 2 2

1h11/2 ⊗ 4+
2 4 0

11/2−2 8 1h11/2 ⊗ 2+
2 17 23

1h11/2 ⊗ 4+
1 10 7

1h11/2 ⊗ 5+
1 4 2

1h11/2 ⊗ 2+
4 2 3

of spin 9/2− and one 5/2− state shown in the rightmost
column of the lower part of fig. 5. The spin and parity
assignments are only tentative for all these three levels.
This is why we do not try to draw conclusions concern-
ing their origin. According to the calculation the lowest
negative-parity state is 11/2−1 . Two other levels, namely
9/2−1 and 7/2−1 , are predicted to be placed slightly above:
22 keV and 35 keV, respectively. Such a narrow multi-
plet is also observed in the experiment [2] but with a
different ordering of the states, namely 7/2−1 , 9/2−1 and
11/2−1 . The lowest observed negative-parity state 7/2−1 is
located 254 keV above the lowest experimental positive-
parity state 5/2+1 [2]. The corresponding calculated energy
equals 297 keV, quite close to the observed value. The cal-
culated position of the 11/2−2 level belonging to band 8 as
well as its decay properties do not agree with the experi-
mental data. From experience of the present calculations
we know that increasing the value of strength χ2 improves
results in this respect. It was already mentioned in sect. 2
that a change of χ2 simulates the corresponding change of
the quadrupole deformation. Therefore, a need to change
the core-particle interaction strength could be a signature
that the odd neutron in state 1h11/2 polarizes the core in
a different way than that in a positive-parity state.

The structure of the negative-parity states is much
simpler than that of those of positive-parity discussed in
sect. 4.2.1 above. This is understandable since the main
neutron orbital contributing to these states is the 1h11/2
intruder state in the valence neutron shell 50 < N ≤ 82.
For instance, the contribution of 2f7/2 orbital to the 7/2−1

Table 3. Calculated magnetic dipole moments, µ and electric
quadrupole moments, Q, of selected positive- and negative-
parity states of 111Ru.

State b.n. µ Q
Jπk (µN ) (e · b)

5/2+
1 3 −0.46 1.20

3/2+
1 2 0.78 −0.67

1/2+
1 1 0.02 0.

11/2−1 6 −0.70 −0.29
9/2−1 5 −0.83 0.23
7/2−1 6 −1.07 0.97

state is only of 5 % according to the calculation. However,
we notice that although the calculated contributions to
the negative-parity states coming from low-spin neutron
orbitals 3p1/2, 3p3/2, 2f5/2 and 2f7/2 are small, taking
these orbitals into account is of importance in the
calculation. Indeed, these single-neutron states affect the
positions of some low-spin levels of 111Ru. The 9/2−1 ,
13/2−1 , 17/2−1 , 21/2−1 and 25/2−1 states of band 5 are pre-
dominantly composed of the 2+1 , 2

+
1 , 4

+
1 , 6

+
1 and 8+1 states,

respectively, of the A = 110 and A = 112 cores. Similarly,
the states belonging to band 6 with spins 11/2−, 15/2−,
19/2−, 23/2− and 27/2− are built on the 0+1 , 2

+
1 , 4

+
1 , 6

+
1

and 8+1 core states, respectively. Bands 7 and 8 are based
on the quasi-γ band of both cores. The 13/2−2 and 17/2−2
states of band 7 correspond to the 2+2 and 3+1 core states,
respectively, whereas states 11/2−2 , 15/2−2 , 19/2−2 and
23/2−2 of band 8 come from the 2+2 , 2

+
2 , 4

+
2 and 6+2 core

states, respectively. It is interesting that the positive-
parity bands containing such quasi-γ core configurations
are not observed experimentally, as mentioned already
in sect. 4.2.1. Theoretically, such positive-parity bands
are located higher than the analogous bands of negative
parity. This higher energy perhaps explains why those
positive-parity states are populated weakly in the spon-
taneous fission process which is used as a source of the
111Ru nuclei in the experiment of ref. [2]. The structure
of selected negative-parity states is listed in table 2.

4.2.3 Electromagnetic properties

There are no experimental data on electromagnetic prop-
erties of nucleus 111Ru till now. Here, in table 3 we show
as an instance the theoretical predictions for spectroscopic
moments of a few of its selected states.

5 Summary and conclusions

The structure of nucleus 111Ru treated as a system of the
odd, 67th neutron coupled to the neighbouring even-even
cores, 110Ru and 112Ru, has been investigated in the frame
of the Core-Quasiparticle Coupling model. According to
the model the neutron is a quasiparticle, being a particle
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on the top of the lighter core and a hole in the heavier one.
The present calculation has confirmed the importance of
the pairing interaction involved in the CQPC model: the
particle and hole contributions have turned out to be, in
general, both essential in the states of the even-odd nu-
cleus in question. It is a matter of course since the neu-
tron Fermi level for N = 67 is in the middle of the va-
lence shell. Since the characteristics of both cores are very
similar it has been assumed for simplicity that they are
the same and correspond to those of 110Ru. The excita-
tion energies and quadrupole matrix elements for 110Ru
have been taken from calculations of ref. [7] performed in
the frame of collective “quadrupole plus pairing” model.
The Bohr Hamiltonian has been determined fully from a
microscopic theory without any free parameter. Due to
that approach to collective excitations it became feasi-
ble to extract properties of collective states from a micro-
scopic theory and obtain results compatible with experi-
mental data with no adjustable parameters. Characteris-
tics of collective states of an even-even nucleus got that
way are for the first time used in the present research
to describe an odd nucleus within CQPC model. There
is only one free parameter in the CQPC calculations for
even-odd nuclei. This is the core-particle coupling strength
χ2 for quadrupole-quadrupole interaction. In the case of
111Ru the value χ2 = 15MeV has been found to give rea-
sonable results. This value is close to value χ2 ≈ 11MeV
suggested by Arima in ref. [16] but far from the estimation
χ2 ≈ 40MeV by Bès and Sorensen [9]. More data, espe-
cially for low-spin states, would be necessary to confirm
the present choice of χ2 for nuclei of A ≈ 110.

All experimental positive-parity states have been re-
produced in the present calculation. This suggests that
neither the prolate-oblate shape coexistence nor the
normal-extended deformation coexistence occur in states
of 111Ru observed experimentally. Should the shape
and/or the deformation coexistence exists some additional
states would appear which would not be explained in the
present calculation. The 110Ru core is a triaxial γ-soft nu-
cleus in the view of the theory of ref. [7] and the collective
wave functions can be localized neither around γ = 0 nor
around γ = π/3. Also, the collective potential energy sur-
face for 110Ru does not possess a second minimum, as
we have seen in fig. 1. The core polarization effect is, ap-
parently, not strong enough here to change substantially
localizations of the wave functions of 111Ru in the defor-
mation space.

A strong configuration mixing of single-neutron states
3s1/2, 2d3/2, 2d5/2 and 1g7/2 coupled to the yrast states
of the cores has been obtained for positive-parity bands
in the present calculation. It becomes gradually weaker
for higher-energy and higher-spin members of the bands.
The dominant single-particle configurations are then 2d5/2
for bands 1 and 2 with quite a large admixture of 1g7/2
and 2d3/2, respectively, and 1g7/2 for bands 3 and 4. The

band built on state 1/2+1 , which has for the first time been
observed in experiment of ref. [2] for nuclei of A ≈ 110, is
reproduced by the present model.

All four negative-parity bands observed in the ex-
periment have been explained theoretically. These bands
have a relatively simple structure according to the present
theory. The dominant configuration is the single-neutron
1h11/2 quasiparticle state coupled to the core ground-state
band. There are also predicted negative-parity states cor-
responding to the 1h11/2 neutron orbital coupled to the

core quasi-γ states 2+2 , 3+1 , 4+2 , . . . . The states of posi-
tive parity built on the quasi-γ core states are predicted
to have higher energy than those of negative parity. This
explains why such “quasi-γ” states of negative parity are
observed in experiment [2] whereas those of positive parity
are not. Apparently, the latter ones are hardly populated
in the process of spontaneous fission serving as a source
of 111Ru in the experiment [2].

To sum up one should point out some characters of
the present calculation. The collective properties of the
even-even cores, 110Ru and 112Ru, used in the calculation
have originated from a microscopic theory and have not
been adjusted to data. Only one free parameter has been
used in description of coupling the odd neutron to both
cores. As the Fermi level is placed in the middle of the
valence shell the states of 111Ru possess a complicated
quasiparticle structure. All eight positive- and negative-
parity bands observed experimentally have been identified
and explained in the frame of the CQPC model. In view of
all these circumstances the conclusion is that the results
are in a remarkable agreement with experimental data.

The present work was supported in part by the Polish
Committee for Scientific Research (KBN) under contract
no. 2P03B04119.
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